Combining Information from Multiple Classiiers for Speaker Veriication

نویسندگان

  • Sangita Sharma
  • Pieter
  • Pieter Vermeulen
  • Hynek Hermansky
چکیده

in Proc. of Speaker Recognition and its Commercial and Forensic Applications, France, April 1998. Combining Information from Multiple Classi ers for Speaker Veri cation Sangita Sharma1, Pieter Vermeulen1, Hynek Hermansky1;2 1Oregon Graduate Institute of Science and Technology, Portland, Oregon, USA. 2International Computer Science Institute, Berkeley, California, USA. sangita,pieter,[email protected] Abstract Given two independent speaker veri cation systems, it is reasonable to expect some uncorrelated errors. If some trends in this behavior can be detected, one should be able to improve the performance of the combined system beyond that of the best individual system. In this paper, we use a non-linear combiner to combine results from two independent speaker veri cation systems. Experiments conducted on a subset of the 97 NIST Speaker Evaluation Task, show that the combination improves equal error rate (EER) by up to 9% when the two systems have comparable performance. When one system outperforms the other, the performance of the combiner is similar to that of the best system. Experiments using simulated data show that the combination yields large improvement (21%) in performance when the two systems outperform each other under di erent operating conditions. R esum e Donn e deux syst emes ind ependants de v eri cation de locuteur, ils devraient avoir quelques erreurs noncorr elatives. Si de telles tendances dans les erreurs peuvent être d etect ees, alors une combinaison de ces syst emes donnez l'erreur inf erieure que le meilleur syst eme individuel. En cet article, nous etudions l'utilisation d'un combinateur non lin eaire de combiner les r esultats de deux syst emes ind ependants de v eri cation de locuteur. Les r esultats indiquent les conditions dans lesquelles le combinateur peut r eduire l'erreur (EER).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependency Relationship Based Decision Combination in Multiple Classifier Systems

Although many decision combination methods have been proposed, most of them did not focus on dependency relationship among classiiers in combining multiple decisions. That makes classiication performance of combining multiple decisions be degraded and biased, in case of adding highly dependent inferior classiiers. To overcome such weaknesses and obtain robust classiication performance, the pres...

متن کامل

Histogram Classiiers Using Vocal Tract and Pitch Information for Text-independent Speaker Identiication

| This paper proposes a new text-independent speaker identiication method based on histogram classiiers using vocal tract and pitch information. The purpose of this research is to create a very simple and fast speaker identiication method. The method uses several feature parameters (cepstral coeecients, pitch) related to both vocal tract and pitch information extracted from spoken sentences. Th...

متن کامل

Multi-environment Speaker Verification

Here we investigate an instance of the abstract problem of pattern recognition under mismatch conditions: Models of phenomena are built with data collected in the training environment but must be used to recognize the same phenomena in another environment. The speciic problem is speaker veriication, where the training and testing data for each speaker can come from one of many diierent micropho...

متن کامل

On output independence and complementariness in rank-based multiple classifier decision systems

This study presents a theoretical analysis of output independence and complementariness between classiiers in a rank-based multiple classiier decision system in the context of the Partitioned Observation Space theory. T o enable such an analysis, an Information Theoretic interpretation of a rank-based multiple classiier system is developed and basic concepts from Information Theory are applied ...

متن کامل

Combining Nearest Neighbor Classi ers Through Multiple

Combining multiple classiiers is an eeective technique for improving accuracy. There are many general combining algorithms, such as Bagging or Error Correcting Output Coding, that signiicantly improve classiiers like decision trees, rule learners, or neural networks. Unfortunately, many combining methods do not improve the nearest neighbor classiier. In this paper, we present MFS, a combining a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998